

COMPREHENSIVE BUSINESS PLAN: 100 MWH CLEAN COAL POWER PLANT WITH CO2 ALGAE POND AND GREENHOUSE INTEGRATION

0

www.geodynsolutions.com

COMPREHENSIVE BUSINESS PLAN: 100 MWH CLEAN COAL POWER PLANT WITH CO₂ ALGAE POND AND GREENHOUSE INTEGRATION

EXECUTIVE SUMMARY

This business plan outlines the construction of a 100 MWh clean coal power plant integrated with an algae pond facility and greenhouses. The project is designed to capture and utilize CO₂ emissions to cultivate algae for biofuels, biochar, and food products while using 25% of the captured CO₂ to enrich greenhouses for vegetable production. The electricity generated will be sold at \$0.17/kWh or \$0.25/kWh, depending on the market. Additional revenue will come from biochar, vegetables, algae-derived food products, and carbon credits.

This innovative project contributes to clean energy, carbon sequestration, and sustainable agriculture, achieving an attractive ROI of 38.5% (at \$0.17/kWh) to 59.5% (at \$0.25/kWh). It aligns with Zambia's National Green Growth Strategy (GGS), which promotes development pathways for a low-carbon, resource-efficient, resilient, and socially inclusive economy by 2030. Additionally, the project supports the United Nations Sustainable Development Goals (SDGs):

SDG 7: Affordable and Clean Energy.
SDG 12: Responsible Consumption and Production.
SDG 13: Climate Action.
SDG 15: Life on Land.

GOALS AND OBJECTIVES

- Generate 100 MWh of clean electricity using advanced carbon capture technology.
- Capture 90% of CO₂ emissions and utilize them for algae cultivation and greenhouse production.
- Develop sustainable products: bio-oil, syngas, biochar, and vegetables.
- Diversify revenue through electricity sales, carbon credits, and agricultural outputs.
- Promote environmental sustainability, job creation, and food security.
- Align with Zambia's National Green Growth Strategy (GGS) and SDGs.

PROJECT OVERVIEW

LOCATION

TITLE

TITOL HARD LINE

INDUSTRIAL OR RURAL AREA WITH ACCESS TO COAL, WATER, AND GRID CONNECTIVITY.

> APPROXIMATE LAND REQUIREMENT: 100 ACRES.

KEY FEATURES

CLEAN COAL POWER PLANT

- Capacity: 100 MWh.
- Technology: Advanced combustion with 90% carbon capture.
- **Purpose:** Generate reliable base-load electricity for Zambia's growing energy needs.

ALGAE CULTIVATION FACILITY

- Area: 50 acres of raceway ponds.
- CO₂ Utilization: 75% of captured CO₂.
- Output: 200 tons/day of algae biomass.
 - **90% Biomass:** Pyrolyzed into bio-oil, syngas, and biochar.
 - □ **10% Biomass:** Used for food and animal feed production.

GREENHOUSES

- Area: 20 acres.
- CO₂ Utilization: 25% of captured CO₂.
- **Output:** 3,650 tons/year of high-value vegetables (e.g., tomatoes, cucumbers, leafy greens).

PYROLYSIS PLANT

eodvnsolu

Processes algae biomass into:

- □ **Bio-oil:** 50% of biomass (~100 tons/day).
- □ **Syngas:** 30% of biomass (~60 tons/day).
- □ **Biochar:** 20% of biomass (~40 tons/day).

POWER GENERATION

- Additional electricity from:
 - □ **Bio-oil turbines:** Generate 30 MWh/day.
 - □ Syngas turbines: Generate 10 MWh/day.
 - ORC systems: Generate 5 MWh/day from waste heat recovery.

TECHNICAL SPECIFICATIONS AND PROCESSES

CLEAN COAL POWER PLANT

- Technology: Advanced combustion with 90% CO₂ capture.
- **Purpose:** Provide reliable base-load electricity with minimal emissions.
- **Carbon Capture:** Captured CO₂ is repurposed for algae cultivation and greenhouse operations.

ALGAE POND SYSTEM

- Area: ~50 acres of raceway ponds.
- CO₂ Utilization: 75% of captured CO₂.
- **Output:** ~200 tons of algae biomass daily, supporting biofuel production and food security.

PYROLYSIS PROCESS

- Input: 180 tons/day of algae biomass.
- Outputs:
 - □ **Bio-oil:** 50% of biomass (~100 tons/day).
 - □ **Syngas:** 30% of biomass (~60 tons/day).
 - □ **Biochar:** 20% of biomass (~40 tons/day).

GREENHOUSES

- Area: ~20 acres.
- CO₂ Utilization: 25% of captured CO₂.
- Outputs: ~3,650 tons/year of vegetables for local markets.

POWER GENERATION UNITS

- Primary Source: 100 MWh from the clean coal plant.
- Supplementary Sources:
 - Bio-oil turbines: Generate 30 MWh/day.
 - Syngas turbines: Generate 10 MWh/day.
 - ORC units: Generate 5 MWh/day using waste heat recovery.

ENVIRONMENTAL BENEFITS

CO2 SEQUESTRATION:

Prevents the release of 500,000 tons of CO₂ annually. Biochar provides long-term carbon storage while improving soil health.

SUSTAINABLE OUTPUTS:

Algae absorbs 30-50 times more CO₂ than terrestrial plants. Contributes to a circular economy by transforming CO₂ into valuable products.

FOOD SECURITY:

Provides 3,650 tons/year of vegetables and 7,300 tons/year of algae-based food products, addressing local food shortages.

ECONOMIC IMPACT

JOB CREATION

Construction Phase:

~2,000 direct jobs and ~4,000 indirect jobs.

Operational Phase:

~1,000 permanent jobs, including roles in power plant operations, algae farming, and greenhouse management.

ECONOMIC GROWTH

Boosts local economies through procurement of construction materials and services. Generates significant tax revenues and reduces reliance on food imports.

FINANCIAL PLAN

CAPITAL INVESTMENT

Expense Item	Base Cost (USD)	Contingency (20%)	Total Cost (USD)
Clean Coal Power Plant	\$150,000,000	\$30,000,000	\$180,000,000
Algae Pond & Cultivation	\$50,000,000	\$10,000,000	\$60,000,000
Pyrolysis Plant	\$40,000,000	\$8,000,000	\$48,000,000
Greenhouse Construction	\$30,000,000	\$6,000,000	\$36,000,000
Power Generation Systems	\$20,000,000	\$4,000,000	\$24,000,000
CO ₂ Management Systems	\$10,000,000	\$2,000,000	\$12,000,000
Utilities & Infrastructure	\$10,000,000	\$2,000,000	\$12,000,000
Total Investment	\$310M	\$62M	\$372M

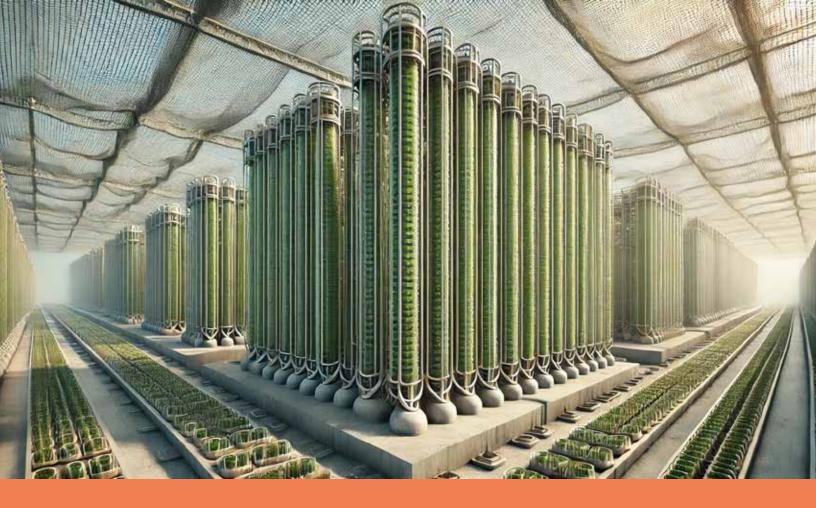
REVENUE STREAMS

Product	Annual Output	Price/Unit	Annual Revenue
Electricity	876,000 MWh	\$0.17–\$0.25/kWh	\$149M-\$219M
Biochar	14,600 tons/year	\$350/ton	\$5.11M
Vegetables	3,650 tons/year	\$1,000/ton	\$3.65M
Algae for Food	7,300 tons/year	\$800/ton	\$5.84M
Carbon Credits	500,000 tons/year	\$10/ton	\$5.00M
Total Revenue			\$168M-\$239M

OPERATIONAL COSTS

Expense Item	Annual Cost (USD)
Coal Supply	\$15,000,000
Labor & Maintenance	\$5,000,000
Utilities & Water	\$3,000,000
Algae Cultivation & Harvesting	\$7,000,000
Pyrolysis Operations	\$4,000,000
Greenhouse Operations	\$2,500,000
CO₂ Management Costs	\$1,500,000
Total Costs	\$38M

NET PROFIT


Electricity at **\$0.17/kWh:** \$168M - \$38M = \$130M. Electricity at **\$0.25/kWh:** \$239M - \$38M = \$201M.

IMPLEMENTATION TIMELINE

Planning (6 Months):Feasibility studies, permitting, and funding procurement.Construction (24-30 Months):Build power plant, algae ponds, pyrolysis plant, and greenhouses.Commissioning (6 Months):o System integration, testing, and operational launch.

THIS 100 MWH CLEAN COAL POWER PLANT INTEGRATED WITH CO₂ ALGAE PONDS AND GREENHOUSES IS A TRANSFORMATIVE PROJECT ALIGNED WITH ZAMBIA'S NATIONAL GREEN GROWTH STRATEGY AND THE UNITED NATIONS SDGS. IT OFFERS A SCALABLE SOLUTION FOR CLEAN ENERGY, CARBON SEQUESTRATION, SUSTAINABLE AGRICULTURE, AND ECONOMIC GROWTH, SETTING A BENCHMARK FOR ZAMBIA'S TRANSITION TO A LOW-CARBON AND RESOURCE-EFFICIENT FUTURE.

AIBMAS

www.geodynsolutions.com

©Geodynsolutions 2024 - All Rights Reserved